翻訳と辞書
Words near each other
・ Milo Bigler
・ Milo Bloom
・ Millyard Viper V10
・ Millán Millán
・ Millésimes
・ Millî Görüş
・ Millî Piyango İdaresi
・ Millôr Fernandes
・ Mill–Pine Neighborhood Historic District
・ Milman
・ Milman baronets
・ Milman Islet
・ Milman Parry
・ Milman's reverse Brunn–Minkowski inequality
・ Milman, Iran
Milman–Pettis theorem
・ Milmarcos
・ Milmay, New Jersey
・ MILMEGA
・ Milmersdorf
・ Milmi
・ Milmilak
・ Milmilgee Falls
・ Milmine
・ Milmine, Illinois
・ Milmoral
・ Milmyeon
・ Milna
・ Milna (disambiguation)
・ Milna (volcano)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Milman–Pettis theorem : ウィキペディア英語版
Milman–Pettis theorem
In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive.
The theorem was proved independently by D. Milman (1938) and B. J. Pettis (1939). S. Kakutani gave a different proof in 1939, and John R. Ringrose published a shorter proof in 1959.
Mahlon M. Day (1941) gave examples of reflexive Banach spaces which are not isomorphic to any uniformly convex space.
== References ==

* S. Kakutani, ''Weak topologies and regularity of Banach spaces'', Proc. Imp. Acad. Tokyo 15 (1939), 169–173.
* D. Milman, ''On some criteria for the regularity of spaces of type (B)'', C. R. (Doklady) Acad. Sci. U.R.S.S, 20 (1938), 243–246.
* B. J. Pettis, ''A proof that every uniformly convex space is reflexive'', Duke Math. J. 5 (1939), 249–253.
* J. R. Ringrose, ''A note on uniformly convex spaces'', J. London Math. Soc. 34 (1959), 92.
*
fr:Théorème de Milman-Pettis

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Milman–Pettis theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.